Accelerometers: One size does not fit all...

Jeremy Daily

John Daily
20th Annual IATAI Conference 6-8 Sept 2006
PA. State Police Reconstruction Conference 27 Sept 2006

Overview

- Identify the need for accelerometers
- Survey of accelerometer types
- Overall measurement system
\square Sensors
\square Transducers
\square Signal Conditioners
\square Output
- Accelerometer systems
- Specifications for measuring acceleration
\square Range, Resolution, and Frequency

Why use an accelerometer?

■ Need drag factor for speed computations
\square Only technique capable of measuring truly representative values
\square Accounts for total vehicle/braking/tire/road system
\square Should use an exemplar vehicle on site if possible

- Measure straight line acceleration

What else?

- Lateral Acceleration in Yaw testing
- Crash Testing and Sensing
\square Air bag deployment
\square NCAP, J211, Government sponsored crash testing
\square Crash test dummies
\square Determine PDOF during crash
\square Post impact trajectory

Types of Accelerometers

- Pendulum
- Recording Radar
- Time distance
\square Shot Marker
\square Video
- Electronic
\square Piezoelectric
\square Seismic Mass
\square Piezoresistive
\square MEMS

(micro electrical mechanical systems)

Concomitant Methods

- Measure velocity and time
\square Stalker RADAR
\square accel = DeltaV / DeltaT
\square Noisy for a(t)
\square Great for average acceleration
- Measure force with known mass
\square Most acceleration sensors
\square accel = Force $/$ mass
\square Can be very sensitive

Overall Measurement System

| Sensor Element |
| :---: | :---: |
| (Suspended Mass) |\rightarrow| Transducer |
| :---: |
| (piezoresistor) |$\rightarrow \xrightarrow{\text { Signal Conditioner }}$| (A/D Converter) |
| :---: |\rightarrow| Output |
| :---: |
| (Data Logger) |

- Sense acceleration
\square Newton's Second Law: F=Ma

Overall Measurement System

Sensor Element (Suspended Mass)	Transducer (piezoresistor)	Signal Conditioner (A/D Converter)	Output (Data Logger)

- Convert Transducer Output
\square May need amplification (Wheatstone Bridge)
\square May need filtering
\square Convert analog signal to digital signal

Analog to Digital

Overall Measurement System

Piece-meal Accelerometer Measurement System

- Assemble everything yourself:
\square Accelerometer
\square Filtering
\square A/D Converter
\square Data Logger

\square Data Reduct

Piece-meal Accelerometer Measurement System

- Advantages:
\square May get better performance
\square Helps understanding
\square May be lower cost
\square Expandable
- Disadvantages:
\square Time consuming
\square Requires verification and calibration
\square May not work quite right the first time

Turn-Key Systems

- Requires no assembly or familiarity with electronics
- May be pricy

Comparing Accelerometer Systems

- Range
\square What is the anticipated range (Peak-Peak) of the event?
- +/- 1.5 G for braking/acceleration
- +/- 100G (possibly) for crash events
- Sampling Frequency
\square How long does your event last?
- a.k.a: Period
\square Are there details within your event?
\square How much memory (cost) can you afford?
\square Are there frequency limits for the sensor?
- DC coupled/output (good for vehicle performance)
- High frequency capabilities (good for crash testing)

Comparing Accelerometer Systems

- Resolution
\square How many bits does your Analog to Digital Converter use?
\square Number of levels $=2^{\# \text { of bits }}$
■ e.g. 10 bits gives $2^{10}=1024$ possible values
- e.g. 12 bits gives $2^{12}=4096$ possible values
\square Resolution is the range of the instrument divided by the number of levels

$$
\text { res }=\frac{\text { range }}{2^{n}}
$$

Specifying a Dream Accel

■ +/- 100g's $=200 \mathrm{~g}$ range

- 24 Bit A/D = 16,777,216 levels
$\square \sim 0.000012 \mathrm{~g}$ resolution
- 10,000 samples per second
- 30 second event

\square Required Memory:

$$
2^{24}(10,000)(30) / 8=629 \text { Gigabytes }
$$

- Overkill for a brake test!

Specifying a Realistic Accel.

- +/- 2g's = 4 g range
- 10 bit A/D = 1024
$\square 0.004 \mathrm{~g}$ resolution
- 100 samples per second
- 30 second event
\square Required Memory:

$$
2^{10}(100)(30) / 8=384 \mathrm{~Kb}
$$

- Sufficient for Vehicle Dynamics but not Crash Recording

Resolution for a Brake Test

- 200g range (for example)
- 10 bit A/D
- 3200 Hz Sampling
- Resolution:
$\square 200 \mathrm{~g} / 1024=0.19 \mathrm{~g}$
- Electronic or mechanical noise will have steps of 0.19 g
- Automatic 30% error if measuring $\mathrm{f}=0.7$
- Not so good for brake/dynamics test

- 4g range
- 10 bit A/D for externals
- 16 bit for Accel. Output
- 100 Hz Sampling
- Resolution:
$\square 4 \mathrm{~g} / 65,336=0.00006 \mathrm{~g}$
- Electronic or mechanical noise will have steps of 0.0005 g realistically.
- Automatic 0.07\% error if measuring $\mathrm{f}=0.7$
- Good for brake/dynamics test

Sampling Rate for a Crash

- 200g range (for example)
\square Can resolve peak amplitudes in crashes
- 3200 Hz Sampling
$\square 320$ samples in a 100 mSec crash event.
\square Can resolve frequencies up to 1600 Hz (vibration of the vehicle)
- Good instrument for crash testing

- 4g range
\square Peak accelerations are cutoff
- 100 Hz Sampling
$\square 10$ samples in a 100 mSec crash event.
\square Can resolve frequencies up to 50 Hz
- Little useful information for crash testing

Common Mistakes

- Reporting only peak values
\square Common in popular literature
- Be wary of "misapplying" accelerometer results
\square Crown Vic with Eagle RS-A may not represent a Geo Metro
\square New F-150 may not represent old Chevy $3 / 4$ ton.

Summary

- Why use an accelerometer in Crash Reconstruction?
■ Overall Measurement System
\square Sensors (seismic mass)
\square Transducers (piezoelectric effect)
\square Signal Conditioners (filtering and A/D conversion)
\square Output (recording and interpretation)
- Accelerometer systems
- Specifications for measuring acceleration
\square Range, Resolution, and Frequency

Using
 Accelerometer Data

What do we do with the information?

What are we going to do?

- First of all, we will examine various ways of starting the VC3000DAQ accelerometer.
- Next, we will look at the data generated during the accelerometer runs.
- We will look at how to read and interpret the accelerometer graphs.
- We will summarize the results.

VC3000 DAQ Installed

Start Modes

- Auto-Start is used for braking runs. The accelerometer is started when a default value is set for the deceleration (0.20 g is the default value).
- The accelerometer then measures the deceleration until the vehicle comes to a stop.

Start Modes

- The accelerometer may be set up to start with an external switch or signal.
- Examples would be a tape switch on the brake pedal or a hook-up to the brake light switch.
- This mode may be used when determining timing of some action relative to when the driver hits the brakes.
- The accelerometer then measures the deceleration until the vehicle comes to a stop.

Start Modes

- The accelerometer may be used in continuous mode. This may be quite useful as several tests may be carried out during the same run.
- The accelerometer is manually started and stopped by the operator.
- During the time it is on, it measures all variables continuously.

Auto-Start Braking Run

- The next several slides will show graphs generated by the VC3000DAQ when in the braking mode.
- We measure the stopping deceleration.
- The instrument then calculates speed and distance from this information.
- We will look at how to use some of the features of the Profile ${ }^{\circledR}$ program to interpret the generated data.

This is a braking run from the VC3000DAQ. Initiation was at a pre-set 0.20 g . We have graphs of distance, speed, and acceleration. Notice the graphs are labeled as discreet values.

Notice the green and red vertical dotted lines. These are the toggle cursors. They enable us to chose a range over which we may find average values for the measured variables. The graphs are labeled as average values.

We have turned off the distance graph by clicking on the check box.

We have placed the toggle cursors at the beginning of the graph and then at the point where the speed is zero at the end of the skid. The overall average of the skid is 0.785 g .

Here we have placed the green toggle at a point on the graph indicating a deceleration of about 0.50 g . This would be about where we begin to see shadow marks on the road. The red toggle is about where we would see locked wheel skids. The average value for this range is 0.831 g , which is higher than the overall average of 0.785 .

By clicking on the colored bar, we can select what units to display on the y axis.

By bringing the two cursors together at the start of the skid, we can see how fast we were going at the start of the skid. In this case, it is about 33.5 mph .

We have turned the distance graph back on and have made the y-axis read in feet. By bringing the toggle cursors together at the point where the speed is zero, we can see the skid distance is a bit over 48 feet. We also see the time to skid is about 1.94 seconds.

Discreet Start (Tape Switch)

- This next set of slides will help us explore graphs generated by a discreet start.
- In this case, a tape switch on the brake pedal will be used to start the instrument.
■ In addition, an external pressure sensor will be plugged into the VC3000DAQ in order to measure the air pressure at the glad hands on a TT unit.

Tape Switch

External Pressure Transducer

Na Profile 3
File Edit Properties Import Graph Tools Window Help

Header \mid Airport Info \mid Data \mid Sensor Setup \mid OBDII \mid VC3000 Settings \mid Stats

C:\{Documents and Settings\}Owner\}Desktop\}HSI\}Teaching Documents\}Commercial

Vehicle. Mack Tract Date: $5 / 25 / 2005$ Run No.: 1

We are setting the graph to also show the pressure rise in an air brake system (black arrow). This is done by clicking the arrow box next to the variable and selecting the appropriate name (red arrow).

This graph looks a bit complicated, so we will look at it a piece at a time. We will turn off the distance graph and turn on the toggle cursors.

Our goal here is to determine brake lag time for this TT unit. The green cursor is at time 0.00, which is when the driver's foot hit the brake. The red line is placed at a deceleration of about 0.40 g . We can see the lag time is then 0.38 seconds.

By bringing the cursors together at time 0.38 seconds and by changing the y-axis to read pressure in psi, we can see the air pressure at the glad hands was a bit over 54 psi .

We have changed the y-axis to g 's and have placed the toggles between the 0.40 g mark and the point where the speed graph goes to zero. We can see the average deceleration for this unladen TT unit is 0.628 g . The acceleration graph is noisy because of the wheel hop of the trailer.

Sometimes it is useful to use a single cursor. A single cursor will give us discreet values at any point on the graphs. The cursor is placed at 0.38 seconds, which shows us a speed of 45 mph and a travel distance of 25.6 feet from time zero. The deceleration at this point is about 0.41 g .

The single cursor has been placed at the point where the speed is zero. The distance from start is 132.988 feet. The difference in distance between the 25.564 feet from the last slide is about 107. feet. This represents the braking distance of the TT from about 0.41 g . The calculated deceleration from these data is 0.630 , which compares to the average of 0.628 computed by the instrument.

Continuous Mode

- The continuous mode configuration allows measurement from the time the operator turns on the instrument until the instrument is turned off by the operator.
- This allows several performance variables to be measured in the same test, such as acceleration and braking.
- Lateral and longitudinal accelerations are measured simultaneously.
- Simultaneous data from other sensors may be gathered at the same time.

```
File Edit View Import Graph Tools Window Hel
```


Nes caldocuments and Setingelowner Desktop JiSnloaching Decumentavesting am. $\square \square \times$								
Header Data		Sensor Setup \|VC3000 Settings						
Active	Sensor List	Name	Units	Units Range		Input Volts		
				Low	High	Low	High	Smooth
- 1	... Ra	Rate Gyro	deg/sec	-90.000	90.000	0.500	4.500	0
$\checkmark 2$... Sw	witch	on/off	0.000	5.000	0.000	5.000	0
Г3	...			0.000	1.000	0.000	5.000	0
$\Gamma 4$	\ldots			0.000	1.000	0.000	5.000	0
「5	...			0.000	1.000	0.000	5.000	0
$\Gamma 6$...			0.000	1.000	0.000	5.000	0
Γ DAB 1	...			0.000	1.000	0.000	5.000	0
Г DAB 2	...			0.000	1.000	0.000	5.000	0
Γ DAB 3	...			0.000	1.000	0.000	5.000	0
Г DAB 4	...			0.000	1.000	0.000	5.000	0
Γ DAB 5	...			0.000	1.000	0.000	5.000	0
Г DAB 6	...			0.000	1.000	0.000	5.000	0
Γ DAB 7	...			0.000	1.000	0.000	5.000	0
Γ DAB 8	...l			0.000	1.000	0.000	5.000	0 V

When using external sensors, the VC3000 must be configured. Click on the "Sensor Setup" tab for this.

The "VC3000 Settings" tab should also be clicked. Turn on the sensors to be used. The rate gyro must have the "zero adjust" box checked. (Red Arrow) The switch does not need a zero adjust.

Oh, boy! This looks pretty complicated! We should probably start simplifying some things. Since this test was for lateral acceleration, we can turn off acceleration, speed, and distance. We will also set the range between 12 and 17 seconds.

This is better. We have lateral g, the rate gyro, and the switch showing on the graph. The switch shows a +5 volt input every time the DRMS marking system fires. We put in the toggle cursors before we adjusted the range, which is now 12 to 17 seconds.

We have turned off the switch to make the graphs of interest more clear. The chart toggles show the average lateral acceleration for the initial left steer on a lane change maneuver. Notice this average of 0.585 is considerably below the peak, which is above 0.80 . This is an example of transient behavior.

This is the same graph as the previous slide. We have set the y-axis to show the rate gyro in degrees per second. This is the average rate of heading change of the vehicle as it goes into the first half of a lane change. The average is a little over 18 degrees per second, which is below the peak, which is just under 30 degrees per second.

This is from the same data set as the last slide. We have changed the range to 5-15 seconds. We are now just looking at acceleration and speed. The speed at the initial left turn was 45.811 mph and the average acceleration was 0.236 g from a stop.

This is a continuous mode graph of a vehicle in a CSY situation. The peak speed was 46.649 mph . The toggle cursors show the deceleration of the vehicle from the time the driver took his foot off the gas until the turn was initiated. The value is 0.049 g .

This is the same graph as the previous slide. We are showing lateral g on the y-axis and have toggled over the CSY portion of the graph. The average lateral g is 0.859 and the deceleration is 0.125 g . This is steady state behavior.

Further Examples

- The next several slides show the results of other testing.
- The accelerometer was in continuous mode, and the data extracted in the manner we have just discussed.

Freightliner Full Braking- No Axle \#4 - Test \#1
Calculated Deceleration Factor $=-0.48$ Measured Decelration $=-0.471 \mathrm{G}$

Time 87.98 to 91.01 Freight Li 6/17/2004 1

Freightliner: Full Braking - Test \#2
Calculated Deceleration Factor $=-0.48$ Measured Deceleration Factor $=-0.473$

Time 50.82 to 53.93
FreightLin 6/17/2004 2

Freightliner with Spring Brakes Only - Test \#3
No Calculated Drag Factor
Measured Deceleration $=-0.195$

Time 52.58 to 57.02 FreightLin 6/17/2004 3

\checkmark	Avg	Acceleration	- -0.195
	Avg	Speed	5.732
	- Avg	Distance 1,	1,313.898
	Avg	Lat Accel	-0.025
	Avg	Rate Gyro	0.383

Kenworth: Spring Brake Application - Test \# 7
No Calculated Brake Forces
Type 30/30 Chambers on Axles 2, 3, 4 \& 5
Measured Deceleration from Spring brakes $=-0.453 G$

Freightliner: Normal Lane Change - Test \#1

Time 52.38 to 55.17 Freight Li 6/17/2004 1
Г Avg Acceleration 0.016
\square - Avg Speed $\quad 34.785$
-_Avg Distance 1,568.127
$\sqrt{ } \sqrt{ }$ Avg Lat Accel -0.083
_Avg Rate Gyro -3.183

Freightliner: Aggressive Lane Change - Test \#2

Time 29.38 to 31.70 FreightLin 6/17/2004 2
■ Avg Acceleration 0.028

- Avg Speed 30.792
\square Avg Distance 599.280
Avg Lat Accel -0.213
_Avg Rate Gyro -7.801

Freightliner: Normal Lane Change - Test \#3

Time 26.92 to 28.96 FreightLin 6/17/2004 3
「_Avg Acceleration -0.013

- Avg Speed 22.541
\square A Avg Distance $\begin{array}{lr}22.541 \\ \square & 433.572\end{array}$
\checkmark Avg Lat Accel 0.145
_Avg Rate Gyro $\quad 6.392$

Freightliner Bobtail Lane Change-Test \#4

Time 22.78 to 24.45 FreightLin 6/17/2004 4
Г Avg Acceleration 0.049
$\begin{array}{lr}\square \text { Avg Speed } & 28.629 \\ \square=A v g \text { Distance } & 379.816\end{array}$
$\sqrt{\checkmark}$ Avg Lat Accel -0.157
-Avg Rate Gyro -5.990

Kenworth: Aggressive Lane Change - Test \#5

Time 30.90 to 33.22
Kenworth 6/17/2004 5

Kenworth: Double Normal Lane Change - Test \# 7

Kenworth: Acceleration and Jake Brake - Test \#8

—Avg Speed 33.965
_ Avg Distance 1,292.022

- Avg Lat Accel - 0.004

Summary

- In this presentation, we have examined how we may chose an accelerometer system.
\square The system we would use for brake testing is not the same system we would use for crash testing.
■ We have seen examples of how to set up and use the accelerometer to help us both measure and understand vehicle dynamics.
- This understanding assists us in becoming more informed and competent crash reconstructionists.

